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Abstract
Particles of nanometric size show low-frequency vibrational modes that can be
observed by Raman spectroscopy. These modes involve the collective motion
of large numbers of atoms and it is possible to calculate their frequency using
elasticity theory. In this work a simple model for oblate-shaped nanoparticles
is developed and compared with experimental results obtained in bismuth
nanoparticles. It is found that the agreement between theory and experiment is
improved in comparison to the spherical model usually employed. However for
the smallest particles the elastic model is no longer valid and lattice discreteness
has to be considered.

1. Introduction

Vibrations of elastic spheres have been studied for a long time by Jaerisch [1], Lamb [2] and
Love [3]. More recently this problem has been solved by Torres del Castillo [4] using the
spin operators method, which is well suited for decoupling non-scalar equations. However,
this author did not take into account any boundary conditions. The spherical case is well
understood; normal modes of the sphere can be divided into torsional and spheroidal modes [5].
Tamura et al [6] extended the theoretical work by considering different surroundings and thus
various boundary conditions for the spheroidal particles. Experimentally such modes have been
measured in various situations, from very small structures like globular proteins or inorganic
nanoparticles to very large structures like the earth [7, 8]. Surprisingly the Lamb theory is
often used to explain the observed results with reasonable agreement [6–8]. For elastic prolate
spheroids [5, 9], the equations of torsional modes were first given, unsolved, by Jaerisch [10].
These equations were solved by Rand [11] for the torsional mode in an axisymmetric case.
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Some years ago De Gennes and Papoular [12] suggested that the elastic normal modes of
vibrations of globular proteins should be observable by Raman spectroscopy. This technique
has revealed itself to be well suited to the study of nanometric-sized systems that show
characteristic properties derived from the three-dimensional confinement of electrons and
holes as well as of phonons. Such systems have various applications in nonlinear optics,
as light emitters in the visible range in the case of silicon nanocrystals (NCs) or as catalytic
supports [13]. Raman scattering from confined acoustic phonons has been already reported
for some metal and semiconductor NCs [14–17] and proteins [7, 18].

Furthermore this technique was recently used to determine crystallite sizes in the
nanometer range in insulators and semiconductors [19–21]. The studied systems consist of NCs
embedded in glassy matrix [6], free standing powders [21, 22] or colloidal solutions [23, 24].
The acoustical vibrations appear as low-frequency structured bands which are usually attributed
to different types of vibrational modes: breathing, torsional and shearing modes of an elastic
sphere. However, one can prove theoretically that shearing and torsional modes are Raman
inactive for spherical NCs, but not for spheroidal shaped bodies [25].

Due to the difficulty in controlling the size and shape of nanoparticles, mainly spherical
systems have been analysed up to now. It is only recently that other shapes have been obtained
and characterized. [14, 26].

In the present work the case of oblate spheroids is analysed and results are compared
to experimental Raman scattering measurements on nanometric-size Bi crystals. The Bi NCs
were embedded in amorphous germanium thin films and synthesized by pulsed-laser deposition
(PLD) [14]. The size and shape have been characterized using various techniques including
x-rays and high-resolution transmission electronic microscopy (HRTEM). The mean diameter
of the Bi NCs ranged from 2 to 23 nm and their mean height from 0.5 to 6 nm [14].

The Bi NCs are considered as oblate spheroids and the axisymmetric torsional modes
are calculated analytically by solving the elastic wave equation in a homogeneous medium in
oblate spheroidal coordinates [4, 27]. The effects of a matrix in which the sphere is embedded
have been studied by many authors [6, 28, 29]. Usually, different boundary conditions result
in a slight shift in the vibrational energy spectra. These authors have also found that new
vibration modes may appear, depending on the sphere–matrix coupling. These types of modes
are out of the scope of the present work. Thus, the boundary conditions taken into account
are a finite solution at the origin and the body surface free of stresses, i.e. we consider no
interaction between the particles and the amorphous matrix.

2. Elastic wave equation

The displacement field u obtained in the solution of the equation describing the propagation of
an acoustic wave in an elastic medium can be deduced from the scalar and vector displacement
potentials, called respectively φ and A (u = ∇φ + ∇ × A, with ∇ · A = 0) [5]. This situation
implies a solution to the Helmholtz scalar and vector wave equations for these potentials.

As we know, the Helmholtz vector equation is not separable in spheroidal coordinates,
but by considering an axisymmetric potential, i.e.: A = Aϕϕ̂ = A(ξ, η)ϕ̂ [9], where ϕ̂ is the
unitary vector along the ϕ coordinate, the vector equation can be derived as

∇2 Aϕ − Aϕ

f 2(1 − η2)(ξ2 + 1)
+ k2

T Aϕ = 0 (1)

where ∇2 is the Laplacian in spheroidal oblate coordinates [29, 30], f is the spheroid focal
distance and ξ , η and ϕ are the spheroidal coordinates, related to the Cartesian coordinates by

x = f [(1 − η2)(ξ2 + 1)]
1
2 cos ϕ
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y = f [(1 − η2)(ξ2 + 1)]
1
2 sin ϕ

z = f ηξ

with −1 � η � 1, 0 < ξ < ∞, 0 � ϕ � 2π . Here we have chosen the z-axis parallel to the
minor axis of the spheroid [30].

Similarly, the scalar displacement potential φ will be considered as a function of ξ and η.
In the case of the three-dimensional elastic problem,three components of the displacement,

uL, uT1, uT2 are required. They can be expressed like

uL = ∇φ = ∇(Rml(ihL,−iξ)Sml (ihL, η)), m = 0

uT1 = ∇ × A = ∇ × (Rml(ihT,−iξ)Sml (ihT, η)ϕ̂ m = 1

uT2 = 1

k2
T

∇ × ∇ × A = Rml(ihT,−iξ)Sml (ihT, η)ϕ̂ m = 1
(2)

where hL and hT are defined as the product of the respective longitudinal and transversal
wavevector and the focal distance. In these expressions, the spheroidal ‘angular’ function is
given by

Sml(ih, η) =
∞∑

r=0,1

dml
r (ih)Pm

m+r (η)

and the spheroidal ‘radial’ function Rml is defined as

Rml(ih,−iξ) = (l − m)!

(l + m)!

(
ξ2 + 1

ξ2

)m/2 ∞∑
r=0,1

(2m + r)!

r !
ir+m−l dml

r (ih) jm+r (hξ) (3)

where Pm
m+r (η) are the associated Legendre polynomials and jl(hξ) are the spherical Bessel

functions. The sum includes even values of r if (l − m) is even or includes odd values of r
if (l − m) is odd; for a given m, l is always equal or larger than m. The recursion formula
relating successive coefficients dml

r of equation (3) is

αr dml
r+2 + (βr − λml)d

ml
r + γr dml

r−2 = 0 (4)

where

αr = − (2m + r + 2)(2m + r + 1)h2

(2m + 2r + 3)(2m + 2r + 5)
, γr = − r(r − 1)h2

(2m + 2r − 3)(2m + 2r − 1)
,

βr = (m + r)(m + r + 1) − 2(m + r)(m + r + 1) − 2m2 − 1

(2m + 2r − 1)(2m + 2r + 3)
h2.

(5)

The coefficient λml is a function of ih; it is the separation constant of equation (1) and at the
same time it plays the role of an eigenvalue. In order to obtain the coefficients dr , we use the
matrix method suggested by Aquino et al [31] because it permits us to change the matrix size
according to the range of h needed to calculate the solutions.

As we can see, the third equation in (2) corresponds to the torsional axisymmetric
displacement and looks like the displacement solution given by Rand [11] for the prolate
case. The other two equations in (2) can be understood by analogy to the spherical case, as
the ‘spheroidal modes’ of the spheroid, which include the breathing modes.

3. Results and discussion

Considering the boundary conditions, as we said above many authors [2, 6, 15–17] have
theoretically studied the vibrational eigenfrequencies of an elastic sphere with a free surface.
They show a good agreement between experimental and theoretical results even if these spheres
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were embedded in a solid matrix. Tamura et al [6], and Saviot et al [29] have studied the so-
called matrix effect as a function of the ratios of the elastic properties of the NCs and the
matrix. They have also shown that the remaining eigenvalues suffer slight shifts from those
of free vibrations. In a first approximation and according to these results, we shall consider
spheroidal particles with free surfaces.

3.1. Torsional vibrations of elastic oblate spheroid

The boundary conditions are specified by the stress tensor
↔
σ [9], or with its projection on the

normal vector of the spheroid surface, ξ̂ . Free vibrations originate when the stresses or forces
disappear on the surface at ξ = X ; then we have

Fξ=X = ↔
σ · ξ̂ |ξ=X = 0. (6)

The determinant obtained by equation (6) gives us the next transcendental equation associated
with the uT2 component of the displacement, which corresponds to the oblate torsional modes,
in analogy with the result given by Rand [11] for prolate shaped bodies:

X2 + 1

X

d

dX
R1l(ihT,−iX) − R1l(ihT,−iX) = 0. (7)

Unfortunately, breathing and more complicated modes cannot be obtained because in the
determinant (6) the variables cannot be separated. Finally, from equation (7) we can obtain
the vibration frequency (in cm−1):

ωoblate = CT

2πc

hTn X

b
, (8)

a and b being the major and minor semi-axis of the spheroids, respectively; hTn is the nth
root of equation (7), and c the velocity of light. The above expression reduces to the spherical
torsional formula when the spheroid becomes a sphere [32]. The X-value of the spheroidal
surface is easily obtained:

Xoblate = b

f
= b√

a2 − b2
. (9)

By taking the limit f → 0, X → ∞ and f X → R, the sphere radius, equation (7) becomes

d jl(α)

dα
− jl(α)

α
= 0 (l � 1) (10)

where α = kT R.
As one would expect, the above expression is the torsional spherical eigenmode equation.
In our calculation, the formalism of elasticity theory [5, 9] is used, in contrast to Rand’s

solution [11] in which only symmetry arguments are used to solve elastic wave equation.
Unfortunately, as stated above, it has not been possible to obtain other modes than the torsional.
In [9], the problem of a degenerate prolate spheroidal cavity (ξ = 1) with a harmonic pressure
as boundary condition is solved. However, it is solved with approximations and not for all cases;
furthermore, the axisymmetric torsional modes related to the uT2 displacement component are
not treated explicitly.

3.2. Low frequency modes in bismuth nanoparticles

Bi nanoparticles present three Raman active vibration modes in the low-frequency region [14].
The two highest frequency modes present a very small shift with size as they vary from 97.2
to 86.8 cm−1 and from 73 to 66.2 cm−1 when the size decreases, respectively (figure 1).
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Figure 1. Calculated frequencies of oblate (b � a) spheroids (m = 1, l = 1) with increasing semi-
axis a and comparison with experimental results. The straight line represents the spherical torsional
model. Experimental optical phonons (◦, •) and low-frequency modes (�) are from [14]. ( )
are the calculated frequencies for parameters corresponding to the same samples of [14].

The lowest frequency mode has very different behaviour, as its frequency varies from 3 to
48 cm−1 as the b semi-axis varies from 3.09 to 0.25 nm. These results show unambiguously
that the lowest frequency mode is strongly size dependent and is not an ordinary Raman mode.
Moreover, the same authors have performed polarized Raman scattering and have shown
that this mode is not polarized. The same spectral shape is obtained in parallel and crossed
polarizations. This justifies our choice to compare them with calculated torsional modes rather
than breathing modes.

The axisymmetric solution of the sphere corresponds to the eigenvalue m = 0, but in
the spheroidal case, the axisymmetric torsional modes are given for m = 1, and for the
l-values with the condition given above. In figure 2, the torsional mode (l = 1, m = 0) [5]
for a sphere is represented schematically. However, this kind of movement is the limit of the
torsional case of a spheroidal shape body. In this last case, the vibration mode also contains
a linear combination of products of a Bessel function and an associated Legendre polynomial
of superior orders (l = 1, 3, . . . , 2n + 1, . . . ,∞). Such a linear combination also transforms
into only one product when we go to the spherical limit.

The different parameters for the five Bi NCs studied are given in table 1. Figure 1 shows
the eigenfrequencies calculated for l = 1 and m = 1 together with experimental measurements
from low-frequency Raman experiments; the x-axis is given in terms of the inverse of the minor
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Figure 2. A representation of the l = 1, m = 0, 1 torsional mode for a sphere.

Table 1. Semi-axis values, surface ξ = X value, calculated and experimental frequencies of
bismuth nanoparticles.

Sample BG12 BG25 BG50 BG100 BG200

a (nm) 1.15 1.25 3.5 8.5 11.5
b (nm) 0.25 0.42 0.865 1.865 3.09
X 0.222 718 0.356 740 0.255 055 0.224 892 0.278 954
ω1 (cm−1) 83.7 52.9 24.6 11.2 7.0
ωexp (cm−1) 48 48 49.6 17 3

semi-axis b and the lattice parameter d110 of Bi of the rhombohedral structure, corresponding
to the (012) axis of hexagonal equivalent structure, which is equal to 0.328 nm [14]. The
theoretical curves are given maintaining a constant and b varying up to the spherical limit
(b = a), which gives a straight line also represented in figure 1. The a- and b-values are given
as multiples of d110.

We have calculated the frequencies with a- and b-values having the same order of
magnitude as the NCs without free parameters. The torsional spherical model is in reasonable
agreement for large NCs but fails in the case of the small ones. It has to be mentioned here that
the BG25 and BG12 samples have only a few (8) atomic planes. Therefore for the smallest
particles the elastic model is no longer valid and lattice discreteness has to be considered.
Finally we can observe that the parameter X in table 1, given by (9), is approximately the same
for almost all NCs (except BG25); this gives us information about their regular growth, i.e.:
we have quasi-homothetic oblate spheroids, and about the benefits of the technique used, in
this case the PLD method.

4. Conclusion

In this work, an elastic model is used to analyse the experimental Raman frequencies of acoustic
modes of Bi NCs. This model considers a different geometry from the spherical: oblate-shaped
nanoparticles. As we have shown, a small change of the sphericity of the particle lowers the
frequency vibration according to what is experimentally observed. This elastic model fails to
give account for the frequencies of the smallest NCs; in this case a discontinuous treatment of
the problem has to be considered.
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15 219
[25] Duval E 1992 Phys. Rev. B 46 5795
[26] Kofman R, Cheyssac P, Aouaj A, Lereah Y, Deutscher G, Ben-David T, Penisson J M and Bourret A 1994 Surf.

Sci. 303 231
[27] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions (New York: Dover)
[28] Ovsyuk N N and Novikov V N 1996 Phys. Rev. B 53 3113
[29] Saviot L, Murray D B and del Carmen de Lucas M 2003 Preprint cond-mat/0307634 v1
[30] Hanish S, Baier R V, Van Buren A L and King B J 1970 Tables of Radial Spheroidal Waves Functions vol 4

(Washington, DC: Naval Research Laboratory, Transducer Branch, Acoustics Division)
[31] Aquino N, Castaño E and Ley-Koo E 2002 Rev. Mex. Fis. 48 277
[32] Stratton J A, Morse P M, Chu L J, Little D C and Corbató F J 1956 Spheroidal Wave Functions (New York:
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